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LETTER TO THE EDITOR 

Triviality of the prolongation algebra of the 
Ku ram0 t o-Sivas hins k y equation 

H Nijs and R Martini 
Department of Applied Mathematics, Twente University of Technology, PO Box 217, 7500 
AE Enschede, The Netherlands 

Received 25 April 1989 

Abstract. We apply the well known Wahlquist-Estabrook prolongation technique to the 
Kuramoto-Sivashinsky equation. The prolongation algebra turns out to be trivial in the 
sense that it is commutative. This supports non-integrability of the equation. 

The Kuramoto-Sivashinsky equation is a non-linear partial differential equation 
frequently encountered in the study of continuous media. It describes, for instance, 
the fluctuation of a flame front or an oscillating chemical reaction in a homogeneous 
medium. A review may be found in [l]. In conservative form it is written as 

U, + uu, + pu,, + vu,,,, = 0. ( 1 )  

(u,x, t )+(u+c ,x-c t , t ) .  (2) 

This equation is invariant under the Galilean transformation 

In [ 13 the well known Painlev6 analysis is applied to the Kuramoto-Sivashinsky 
equation ( l ) ,  indicating non-integrability of this equation. This is not surprising because 
it is known that the Kuramoto-Sivashinsky equation exhibits chaotic behaviour. In 
this letter we prove, following the well known prolongation technique of Wahlquist 
and Estabrook, that the prolongation algebra for the Kuramoto-Sivashinsky equation 
is trivial in the sense that it is commutative. This result is also a strong indication of 
the non-integrability of the equation. Although there is no rigorous proof that commuta- 
tivity of the pro1ongatio.n algebra implies non-integrability, it is a general conjecture 
that this is indeed the case. This conjecture is supported by many known examples, 
e.g. the Korteweg-de Vries-Burgers equation [2]. 

In order to write equation ( 1 )  as a system of differential forms we introduce p = U,, 
q = U,,, r = uxx,. Equation ( 1 )  can now be written as 

(3) U, + up + pq + vr, = 0. 

In order not to discuss a degenerate case we assume v f O .  When we adopt in the 
six-dimensional space of dependent and independent variables {x, t, U, p, q, r} the basis 
forms {dx, dt, du, dp, dq, dr}, we can represent the equation (3) by the following set 
of 2-forms: 

cY,=du Adt - p  dx Adt 
a * = d p  A d t  -9  dx A d t  

a3 = dq A d t  - r dx A d t  

a4= v d r  A d t  -(pq+ up) dx A d t  -du Adx. 

(4) 
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Let S = ( ( x ,  t, u ( x ,  t ) , p ( x ,  t ) ,  q(x ,  t ) ,  r(x,  t > > }  be a regular two-dimensional manifold 
in six-dimensional space. Any S that is a solution of (3) will annul the set of forms 
(4) and vice versa [ 3 ] .  The ideal of 2-forms ( 4 )  is closed (i.e. Zf=l  q1 A al ,  i = 1, .  . . ,4 ,  
q1 being a set of 1-forms) which means that equation ( 3 )  satisfies the integrability 
conditions. To obtain a prolongation structure we introduce the prolongation variable 
y (the number of prolongation variables will not influence the process and will therefore 
be taken equal to 1). We also introduce the 1-form w = dy + F  dx+ G dt. Following 
[3] we take F =  F(u ,p ,  q, r , y )  and G =  G ( u , p ,  q, r , y ) .  The extended ideal 
I ( a l ,  . . . , cy4, w )  should be closed now, which means in particular that dw = 
Z;'=, Jal  + n A w ( A  are 0-forms and n is a 1-form). We define [ G, F] = GF, - G,F and 
obtain the following equations for F and G: 

Fp = 0 Fq = 0 F,. = 0 ( 5 )  
vF, + G, = 0 (6) 
[ G, F ]  +pG, + qG, + rG, - G,(pq  + u p ) /  v = 0. (7) 

G = -  vrF, + P, 4, Y ) .  

Equations ( 5 )  give F = F ( u ,  y )  and integrating (6) renders 

Substituting this in equation (7) we derive an equation linear in r. After separating 
powers of r and integration with respect to q this yields 

G' = vq(pF,, + [F,, FI) + G 2 ( u ,  P, Y )  
which gives, after substituting this in the remaining part, an equation quadratic in q. 
Collecting powers gives the following three equations: 

F,, = 0 (8) 
2vp[F,,,fl+ v[[F,,  F l ,  F l +  v p 2 F , , , + p ~ , + G ~ = O  (9) 
[ G2, F ]  +pGt + upF, = 0. (10) 

From equation (8) we find F = XI + u X 2 .  Let us introduce the shorthand notation 
[X,, X,] = [i,j] and ~ ~ ( i , j ,  k) for 'Jacobi identity applied for X,, X, and Xk'. Further 
we define 

El, 21 = x4 [ 1,4I = X5 [ I ,  51 = x6 [1,6]=X,.  (11) 

The result for F together with relations (2.9) gives us, after integrating equation (9) 
with respect to p ,  

G 2 =  -p(/~X~+vX~+v~[2,4])+G~(~,y). 

Together with (10) this gives an equation quadratic in p and after collecting powers 
we find 

[2,4] = 0 (12) 

- [ ( p X 2 +  vX5+ vu[2,4]), ( X I  + uX~)]+  u X ~ +  G: = 0 (13) 
[ G3, ( X I  + u X 2 ) ]  = 0. (14) 

JI (  1,2,4) together with (12) gives [2,5] = 0. With this we find after integrating (13) 

G3 = - f U 2 x 2  - U(pX4-k vx6) + x 3 .  

Together with (14) this leads to a quadratic equation in U which splits up into 
[1,3]=0 [2,3] = pX5 + vX, [2 ,6]=-X4/2~ [2,4] = 0 (15) 
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as we already found. Relations (15 )  together with the relations for X, , . . . , X4 ( 1  1 )  
define the prolongation algebra. 

Theorem. The prolongation algebra of the Kuramoto-Sivashinsky equation determined 
by ( 1  1 )  and (1 5)  is commutative. 

Proof: By use of the Jacobi identity we shall prove J I ( ~ ,  5 ,6)  = 3X4/4v2. We already 
found by use of ~ 1 ( 1 , 2 , 4 )  that [2,5] = 0. This relation together with J I (  1,2, 5) leads to 

[ 4 , 5 ] = X 4 / 2 ~ .  (16) 
From JI (  1,2 ,3)  we find a relation between two commutators 

[3 ,4]=-px6-v[1,7] .  

Using (16), ~ 1 ( 1 , 4 , 5 )  gives [4,6] = X5/2v. From J I ( ~ ,  2,6)  we find [2,7] = -X5/v. Now 
J I ( ~ ,  2 ,7 )  gives 

[2, [ I ,  711 + [4,71+ x6/ = 0 (17) 

- ~ [ 2 , [ 1 , 7 ] ] + ~ [ 4 , 7 ] + p X ~ / ~ = O .  (18) 

and from ~ 1 ( 2 , 3 , 4 )  we have 

When we take an appropriate linear combination of (17)  and (18 )  we can eliminate 
[2, [ l ,  711 and therefore we have 

[4,7] = -px4/2 v2 - x6/2 

This result we use to calculate JI(  1,4 ,6)  which gives us 

[ 5 ,  61 = px4/2V2 + x6/ U. 
This result we use to show that 

J1(2,4,6) = 3X4/4v2 

To fulfil this last Jacoby identity X4 has to be zero. It follows easily that X, = 0, X, = 0, 
X, = 0 and therefore [ 1,2] = 0 and [2,3] = 0. We already had [ 1 , 3 ]  = 0, which proves 
the theorem. 

Remark. Adding an additional term of the form Su,,, to the orginal equation ( 1 )  
yields the equation 

U, + UU, + /LUX. + su,,, + vu,,,, = 0. (19) 
In the same way as previously, we can show that the prolongation algebra commutes 
in this case also. So for equation (19) also no non-trivial prolongation algebra exists. 

In conclusion, we have shown for v # 0 that ( 1  1 )  and (15 )  define the prolongation 
algebra for the Kuramoto-Sivashinsky equation. This implies for the generators X, , 
X ,  and X, that they commute. Therefore no non-trivial prolongation algebra exists 
for the Kuramoto-Sivashinsky equation. 

References 

[ l ]  Conte R and Musette M 1989 J. Phys. A: Math. Gen. 22 169 
[2] Feudel F and Steudel H 1985 Phys. Leu. lO7A 5 
[3] Wahlquist H D and Estabrook F B 1975 J. Math. Phys. 16 1 


