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LETTER TO THE EDITOR

Triviality of the prolongation algebra of the
Kuramoto—Sivashinsky equation

H Nijs and R Martini

Department of Applied Mathematics, Twente University of Technology, PO Box 217, 7500
AE Enschede, The Netherlands

‘Received 25 April 1989

Abstract. We apply the well known Wahlquist-Estabrook prolongation technique to the
Kuramoto-Sivashinsky equation. The prolongation algebra turns out to be trivial in the
sense that it is commutative. This supports non-integrability of the equation.

The Kuramoto-Sivashinsky equation is a non-linear partial differential equation
frequently encountered in the study of continuous media. It describes, for instance,
the fluctuation of a flame front or an oscillating chemical reaction in a homogeneous
medium. A review may be found in [1]. In conservative form it is written as

U+ Ul + Ul F Vlir = 0. 1)
This equation is invariant under the Galilean transformation
(u,x, ) >(u+c,x—ct, t). (2)

In [1] the well known Painlevé analysis is applied to the Kuramoto-Sivashinsky
" equation (1), indicating non-integrability of this equation. This is not surprising because
it is known that the Kuramoto-Sivashinsky equation exhibits chaotic behaviour. In
this letter we prove, following the well known prolongation technique of Wahlquist
and Estabrook, that the prolongation algebra for the Kuramoto-Sivashinsky equation
is trivial in the sense that it is commutative. This result is also a strong indication of
the non-integrability of the equation. Although there is no rigorous proofthat commuta-
tivity of the prolongation algebra implies non-integrability, it is a general conjecture
that this is indeed the case. This conjecture is supported by many known examples,
e.g. the Korteweg-de Vries-Burgers equation [2].
In order to write equation (1) as a system of differential forms we introduce p = u,,
q = Uy, = U,,,. Equation (1) can now be written as

u,+up+ug+rvr,=0. (3)

In order not to discuss a degenerate case we assume v 0. When we adopt in the
six-dimensional space of dependent and independent variables {x, ¢, u, p, g, r} the basis
forms {dx, d¢, du, dp, dg, dr}, we can represent the equation (3) by the following set
of 2-forms:

a;=dundt—pdxnadt

a,=dpadt—gdxnadt @)

as;=dgadr—rdxadt

a,=vdradt—(ug+up)dx adt—duadx
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Let S={(x, t, u(x, 1), p(x, 1), g(x, 1), r(x, t))} be a regular two-dimensional manifold
in six-dimensional space. Any S that is a solution of (3) will annul the set of forms
(4) and vice versa [3]. The ideal of 2-forms (4) is closed (i.e. Zf_, mina;, i=1,...,4,
7; being a set of 1-forms) which means that equation (3) satisfies the integrability
conditions. To obtain a prolongation structure we introduce the prolongation variable
v (the number of prolongation variables will not influence the process and will therefore
be taken equal to 1). We also introduce the 1-form w =dy+ F dx+ G dt. Following
[3] we take F=F(u,p,qry) and G=G(up,q,r,y). The extended ideal
I(a,,...,a;,w) should be closed now, which means in particular that dew =
3¢ fi;+n Ao (f are 0-forms and n is a 1-form). We define [G, F] = GF,- G,F and
obtain the following equations for F and G:

F,=0 F,=0 F.=0 (5)
vF,+G,=0 (6)
[G, F1+pG.+9G, +rG,— G,(nq+up)/v=0. (7

Equations (5) give F = F(u, y) and integrating (6) renders
G= _VrFu+Gl(“,P, q’y)

Substituting this in equation (7) we derive an equation linear in r. After separating
powers of r and integration with respect to ¢ this yields

G'=vq(pF,,+[F., F1)+G*(u,p,y)

which gives, after substituting this in the remaining part, an equation quadratic in g.
Collecting powers gives the following three equations:

F..=0 , (8)
2vp[ Fuu, f1+ v[[F., F1, F1+ vp*F o+ uF, + G, =0 (9
[G?, F1+pGZ+upF, =0. (10)

From equation (8) we find F=X,+uX,. Let us introduce the shorthand notation
[Xi, X;1=[ij] and n(i, j, k) for ‘Jacobi identity applied for X;, X; and X,'. Further
we define

[1,2]=X, [1,4]=X;s [1,5]=Xs [1,6]=X;. (11)
The result for F together with relations (2.9) gives us, after integrating equation (9)
with respect to p,

G?=—p(uX,+ vXs+wvu[2,4])+ G*(u, y).

Together with (10) this gives an equation quadratic in p and after collecting powers
we find

[2,4]=0 (12)
—[(uX,+ vXs+vu[2, 4]), (X;+ uX,)]+ uX,+ G, =0 (13)
[G?, (X, +uX,)]=0. (14)

J1(1, 2, 4) together with (12) gives [2, 5]1=0. With this we find after integrating (13)
G = -1’ X, —u(uX,+ vXe)+ X;.

Together with (14) this leads to a quadratfc equation in u which splits up into

[1,3]=0 [2,3] = puXs+vX; [2,6]=—X,/2v [2,4]=0 (15)
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as we already found. Relations (15) together with the relations for X;,..., X, (11)
define the prolongation algebra.

Theorem. The prolongation algebra of the Kuramoto-Sivashinsky equation determined
by (11) and (15) is commutative.

Proof. By use of the Jacobi identity we shall prove J1(2, 5, 6) =3X,/4v>. We already
found by use of 11(1, 2, 4) that [2, 5]=0. This relation together with 51(1, 2, 5) leads to
[4,5]=X,/2v. (16)
From 11(1, 2, 3) we find a relation between two commutators
[3,4]=—uXs—v[1,7].

Using (16), 31(1, 4, 5) gives [4, 6] = Xs/2v. From 11(1, 2, 6) we find [2, 7] = =X/ v. Now
1(1,2,7) gives

[2,[1,7]11+[4, 7]+ Xs/v=0 (17)
and from J1(2, 3, 4) we have
-v[2,[1, 7]+ v[4, 7]+ uX,/ v =0. (18)

When we take an appropriate linear combination of (17) and (18) we can eliminate
[2,[1,7]] and therefore we have

[4,7]= —uX,/2v* - X¢/2v.

This result we use to calculate Ji(1, 4, 6) which gives us
[5, 6]= uX./2v*+ X,/ v.

This result we use to show that
11(2, 4, 6) =3X,/41°

To fulfil this last Jacoby identity X has to be zero. It follows easily that Xs=0, X,=0,
X,=0 and therefore [1,2] =0 and [2,3]=0. We already had [1, 3] =0, which proves
the theorem.

Remark. Adding an additional term of the form 8u,,, to the orginal equation (1)
yields the equation

U+ Ul + it + Sty + Vil = 0. (19)

In the same way as previously, we can show that the prolongation algebra commutes
in this case also. So for equation (19) also no non-trivial prolongation algebra exists.

In conclusion, we have shown for v # 0 that (11) and (15) define the prolongation
algebra for the Kuramoto-Sivashinsky equation. This implies for the generators X,
X, and X, that they commute. Therefore no non-trivial prolongation algebra exists
for the Kuramoto-Sivashinsky equation.
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