Triviality of the prolongation algebra of the Kuramoto-Sivashinsky equation

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1989 J. Phys. A: Math. Gen. 22 L861
(http://iopscience.iop.org/0305-4470/22/18/001)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 31/05/2010 at 11:59

Please note that terms and conditions apply.

LETTER TO THE EDITOR

Triviality of the prolongation algebra of the Kuramoto-Sivashinsky equation

H Nijs and R Martini
Department of Applied Mathematics, Twente University of Technology, PO Box 217, 7500 AE Enschede, The Netherlands

Received 25 April 1989

Abstract

We apply the well known Wahlquist-Estabrook prolongation technique to the Kuramoto-Sivashinsky equation. The prolongation algebra turns out to be trivial in the sense that it is commutative. This supports non-integrability of the equation.

The Kuramoto-Sivashinsky equation is a non-linear partial differential equation frequently encountered in the study of continuous media. It describes, for instance, the fluctuation of a flame front or an oscillating chemical reaction in a homogeneous medium. A review may be found in [1]. In conservative form it is written as

$$
\begin{equation*}
u_{t}+u u_{x}+\mu u_{x x}+\nu u_{x x x x}=0 . \tag{1}
\end{equation*}
$$

This equation is invariant under the Galilean transformation

$$
\begin{equation*}
(u, x, t) \rightarrow(u+c, x-c t, t) . \tag{2}
\end{equation*}
$$

In [1] the well known Painlevé analysis is applied to the Kuramoto-Sivashinsky equation (1), indicating non-integrability of this equation. This is not surprising because it is known that the Kuramoto-Sivashinsky equation exhibits chaotic behaviour. In this letter we prove, following the well known prolongation technique of Wahlquist and Estabrook, that the prolongation algebra for the Kuramoto-Sivashinsky equation is trivial in the sense that it is commutative. This result is also a strong indication of the non-integrability of the equation. Although there is no rigorous proof that commutativity of the prolongation algebra implies non-integrability, it is a general conjecture that this is indeed the case. This conjecture is supported by many known examples, e.g. the Korteweg-de Vries-Burgers equation [2].

In order to write equation (1) as a system of differential forms we introduce $p=u_{x}$, $q=u_{x x}, r=u_{x x x}$. Equation (1) can now be written as

$$
\begin{equation*}
u_{t}+u p+\mu q+\nu r_{x}=0 . \tag{3}
\end{equation*}
$$

In order not to discuss a degenerate case we assume $\nu \neq 0$. When we adopt in the six-dimensional space of dependent and independent variables $\{x, t, u, p, q, r\}$ the basis forms $\{\mathrm{d} x, \mathrm{~d} t, \mathrm{~d} u, \mathrm{~d} p, \mathrm{~d} q, \mathrm{~d} r\}$, we can represent the equation (3) by the following set of 2 -forms:

$$
\begin{align*}
& \alpha_{1}=\mathrm{d} u \wedge \mathrm{~d} t-p \mathrm{~d} x \wedge \mathrm{~d} t \\
& \alpha_{2}=\mathrm{d} p \wedge \mathrm{~d} t-q \mathrm{~d} x \wedge \mathrm{~d} t \tag{4}\\
& \alpha_{3}=\mathrm{d} q \wedge \mathrm{~d} t-r \mathrm{~d} x \wedge \mathrm{~d} t \\
& \alpha_{4}=\nu \mathrm{d} r \wedge \mathrm{~d} t-(\mu q+u p) \mathrm{d} x \wedge \mathrm{~d} t-\mathrm{d} u \wedge \mathrm{~d} x .
\end{align*}
$$

Let $S=\{(x, t, u(x, t), p(x, t), q(x, t), r(x, t))\}$ be a regular two-dimensional manifold in six-dimensional space. Any S that is a solution of (3) will annul the set of forms (4) and vice versa [3]. The ideal of 2 -forms (4) is closed (i.e. $\Sigma_{i=1}^{4} \eta_{i} \wedge \alpha_{i}, i=1, \ldots, 4$, η_{i} being a set of 1 -forms) which means that equation (3) satisfies the integrability conditions. To obtain a prolongation structure we introduce the prolongation variable y (the number of prolongation variables will not influence the process and will therefore be taken equal to 1). We also introduce the 1 -form $\omega=\mathrm{d} y+F \mathrm{~d} x+G \mathrm{~d} t$. Following [3] we take $F=F(u, p, q, r, y)$ and $G=G(u, p, q, r, y)$. The extended ideal $I\left(\alpha_{1}, \ldots, \alpha_{4}, \omega\right)$ should be closed now, which means in particular that $\mathrm{d} \omega=$ $\sum_{i=1}^{4} f_{i} \alpha_{i}+n \wedge \omega$ (f_{i} are 0 -forms and n is a 1 -form). We define $[G, F]=G F_{y}-G_{y} F$ and obtain the following equations for F and G :

$$
\begin{align*}
& F_{p}=0 \quad F_{q}=0 \quad F_{r}=0 \tag{5}\\
& \nu F_{u}+G_{r}=0 \tag{6}\\
& {[G, F]+p G_{u}+q G_{p}+r G_{q}-G_{r}(\mu q+u p) / \nu=0} \tag{7}
\end{align*}
$$

Equations (5) give $F=F(u, y)$ and integrating (6) renders

$$
G=-\nu r F_{u}+G^{1}(u, p, q, y)
$$

Substituting this in equation (7) we derive an equation linear in r. After separating powers of r and integration with respect to q this yields

$$
G^{1}=\nu q\left(p F_{u u}+\left[F_{u}, F\right]\right)+G^{2}(u, p, y)
$$

which gives, after substituting this in the remaining part, an equation quadratic in q. Collecting powers gives the following three equations:

$$
\begin{align*}
& F_{u u}=0 \tag{8}\\
& 2 \nu p\left[F_{u u}, f\right]+\nu\left[\left[F_{u}, F\right], F\right]+\nu p^{2} F_{u u u}+\mu F_{u}+G_{p}^{2}=0 \tag{9}\\
& {\left[G^{2}, F\right]+p G_{u}^{2}+u p F_{u}=0 .} \tag{10}
\end{align*}
$$

From equation (8) we find $F=X_{1}+u X_{2}$. Let us introduce the shorthand notation [$\left.X_{i}, X_{j}\right]=[i, j]$ and $\jmath(i, j, k)$ for 'Jacobi identity applied for X_{i}, X_{j} and X_{k} '. Further we define

$$
\begin{equation*}
[1,2]=X_{4} \quad[1,4]=X_{5} \quad[1,5]=X_{6} \quad[1,6]=X_{7} . \tag{11}
\end{equation*}
$$

The result for F together with relations (2.9) gives us, after integrating equation (9) with respect to p,

$$
G^{2}=-p\left(\mu X_{2}+\nu X_{5}+\nu u[2,4]\right)+G^{3}(u, y)
$$

Together with (10) this gives an equation quadratic in p and after collecting powers we find

$$
\begin{align*}
& {[2,4]=0} \tag{12}\\
& -\left[\left(\mu X_{2}+\nu X_{5}+\nu u[2,4]\right),\left(X_{1}+u X_{2}\right)\right]+u X_{2}+G_{u}^{3}=0 \tag{13}\\
& {\left[G^{3},\left(X_{1}+u X_{2}\right)\right]=0 .} \tag{14}
\end{align*}
$$

$\mathrm{JI}(1,2,4)$ together with (12) gives $[2,5]=0$. With this we find after integrating (13)

$$
G^{3}=-\frac{1}{2} u^{2} X_{2}-u\left(\mu X_{4}+\nu X_{6}\right)+X_{3} .
$$

Together with (14) this leads to a quadratic equation in u which splits up into
$[1,3]=0$
$[2,3]=\mu X_{5}+\nu X_{7}$
$[2,6]=-X_{4} / 2 \nu$
$[2,4]=0$
as we already found. Relations (15) together with the relations for X_{1}, \ldots, X_{4} (11) define the prolongation algebra.

Theorem. The prolongation algebra of the Kuramoto-Sivashinsky equation determined by (11) and (15) is commutative.

Proof. By use of the Jacobi identity we shall prove $\boldsymbol{J}(2,5,6)=3 X_{4} / 4 \nu^{2}$. We already found by use of $\mathrm{JI}(1,2,4)$ that $[2,5]=0$. This relation together with $\mathrm{JI}(1,2,5)$ leads to

$$
\begin{equation*}
[4,5]=X_{4} / 2 \nu \tag{16}
\end{equation*}
$$

From $\mathrm{mI}(1,2,3)$ we find a relation between two commutators

$$
[3,4]=-\mu X_{6}-\nu[1,7] .
$$

Using (16), $\mathrm{JI}(1,4,5)$ gives $[4,6]=X_{5} / 2 \nu$. From $\mathrm{JI}(1,2,6)$ we find $[2,7]=-X_{5} / \nu$. Now $\mathrm{s}(1,2,7)$ gives

$$
\begin{equation*}
[2,[1,7]]+[4,7]+X_{6} / \nu=0 \tag{17}
\end{equation*}
$$

and from $\operatorname{st}(2,3,4)$ we have

$$
\begin{equation*}
-\nu[2,[1,7]]+\nu[4,7]+\mu X_{4} / \nu=0 . \tag{18}
\end{equation*}
$$

When we take an appropriate linear combination of (17) and (18) we can eliminate [$2,[1,7]]$ and therefore we have

$$
[4,7]=-\mu X_{4} / 2 \nu^{2}-X_{6} / 2 \nu .
$$

This result we use to calculate $\mathrm{JI}(1,4,6)$ which gives us

$$
[5,6]=\mu X_{4} / 2 \nu^{2}+X_{6} / \nu
$$

This result we use to show that

$$
\mathrm{JI}(2,4,6)=3 X_{4} / 4 \nu^{2}
$$

To fulfil this last Jacoby identity X_{4} has to be zero. It follows easily that $X_{5}=0, X_{6}=0$, $X_{7}=0$ and therefore $[1,2]=0$ and $[2,3]=0$. We already had $[1,3]=0$, which proves the theorem.

Remark. Adding an additional term of the form $\delta u_{x x x}$ to the orginal equation (1) yields the equation

$$
\begin{equation*}
u_{t}+u u_{x}+\mu u_{x x}+\delta u_{x x x}+\nu u_{x x x x}=0 . \tag{19}
\end{equation*}
$$

In the same way as previously, we can show that the prolongation algebra commutes in this case also. So for equation (19) also no non-trivial prolongation algebra exists.

In conclusion, we have shown for $\nu \neq 0$ that (11) and (15) define the prolongation algebra for the Kuramoto-Sivashinsky equation. This implies for the generators X_{1}, X_{2} and X_{3} that they commute. Therefore no non-trivial prolongation algebra exists for the Kuramoto-Sivashinsky equation.

References

[1] Conte R and Mussette M 1989 J. Phys. A: Math. Gen. 22169
[2] Feudel F and Steudel H 1985 Phys. Lett. 107A 5
[3] Wahlquist H D and Estabrook F B 1975 J. Math. Phys. 161

